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The interval of Rayleigh numbers in BBnard convection corresponding to cellular 
motion is determined in the case of free-free boundaries, rigid-free boundaries 
and rigid-rigid boundaries, taking into account the variation of the kinematic 
viscosity with temperature. Neglecting the effect of surface tension, it is shown 
that this interval is largest for the rigid-rigid case. The most important feature 
from the obtained formula (6.1) is, however, that the interval is extremely 
dependent on the depth of the fluid layer. To obtain a cellular pattern it is there- 
fore necessary to have very small fluid depths. For example, with Silicone oil and 
a fluid depth of 7 mm, cellular motion will, according to the theory, be observed 
for Rayleigh numbers larger than the critical value and less than 1-07 times the 
critical value. For a fluid depth of 5 mm, however, the formula (6.1) gives that 
cellular motion will be observed for Rayleigh numbers up to 1.54 times the 
critical value. 

1. Introduction 
When in experiments on thermal convection the Rayleigh number is given a 

value larger than the critical one, a motion will be set up which often may have 
a very regular pattern. The latest experimental results available concerning the 
cellular motion in thermal convection are those due to Koschmieder (1966), who 
demonstrates that in the case of rigid-free boundaries, a regular cellular motion 
develops, the cells being nearly of hexagonal form. In the case of rigid-rigid 
boundaries, however, he finds that other patterns are preferred, which are highly 
influenced by the lateral boundaries. 

From the theoretical side it has been shown in works by Palm (1960), Segel& 
Stuart (1962), Palm & Biann (1964) and Segel (1965) (referred to as I-IV, 
respectively) that for values of the Rayleigh number slightly above the critical 
one, hexagonal cells constitute the only stable motion. For larger values of the 
Rayleigh number both hexagons and two-dimensional rolls are stable solutions, 
whereas for still higher values, rolls are the only stable modes. To derive this 
result, it was essential to take into account the variation of viscosity with tem- 
perature. However, for mathematical simplicity only the free-free case was 
considered. In  order to be able to compare theory and experiments quantitatively 
we shall therefore in the present note take into account more realistic boundary 
conditions, i.e. we shall consider the rigid-rigid case and the rigid-free case. 
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Schluter, Lortz & Busse (1965),  extending the work by Malkus & Veronis 
(1958), prove, under very general conditions, that when the variation of material 
properties with temperature is neglected, two-dimensional rolls are the only 
stable solutions. We shall here in part apply the same techniques and notations 
as used by Schluter et al. From the results of the papers I-IV we are, however, 
led to take into account only two of all the possible solutions of the first-order 
equations. 

2. The basic equations and boundary conditions 
It is assumed that the fluid layer is of infinite horizontal extent and is bounded 

by two horizontal boundaries. When the Boussinesq approximations are applied, 
the equations of motion and continuity may be written 

(2.1) 

where we have used the summation convention, and i, k may be 1 ,2 ,3 .  xl,  x2  are 
horizontal co-ordinates, x, the vertical co-ordinate measured positive upwards, 
t the time, u, the velocity, p the density, po a standard density, p the pressure, 
g the acceleration of gravity and v the kinematic viscosity defined as the ratio of 
the viscosity divided by po. Sii is the Kronecker delta, and uik is the deformation 
tensor given by 

(2-3) 

Furthermore, the equation for conduction of heat is 

and the equation of state may be written 

P = Po(1-4T-To)). (2 .5)  

Here T denotes the temperature, K the (constant) thermal diffusivity, 01 the 
coescient of expansion and To is a standard temperature. It will be assumed that 
v is a linear function of temperature 

y = v , ( l+y(T-To) ) ,  
where y is a constant. 

The temperature may be written 

T = TO-/3x,+O, (2.7) 

where /3 = hT/h with AT denoting the difference in the temperature between the 
lower and upper boundary and h the depth of the layer. The pressure is divided in 

(2.8) 
two parts 

P = P S + h  



Cellular motion in Binnard convection 653 

where ps  is defined by 

_ _  aps = - q(1+0l/?x3), 
Po 3x3 

(2.9) 

i.e. ps is the pressure in the case of pure heat conduction with a temperature 
T = To-/?x3. Applying (3.2) and (2 .6 ) ,  the viscous term in (2.1) may be written 

(2.10) 

Let h denote the depth of the fluid layer. To get a dimensionless form of the 
equations we set 

xi = hxl, ui = Kui/h, t = h2t’/K, 8 = ~ v ~ O ’ / a g h ~ ,  

fi = K2pop’/h2, u i k  = KU&/h2. 
This yields, applying (2.9) and (2.10), and dropping the primes, 

(2.12) 

aui 
axi 
- = 0. (2.13) 

Here B is the Prandtl number, 9 the Rayleigh number and I? a number 
proportional to dvldT:  

(2.14) 

The horizontal boundaries may be either rigid or so-called ‘free’. In  the first 
case ui = 0 at the boundaries; in the last case the vertical velocity and the shearing 
stresses are zero at  the boundary. It will also be assumed that the temperatures at  
the horizontal boundaries are maintained constant. Applying (2.13) we thus have 

ui = 8 = 0 
u3 = a2u3/ax: = 8 = 0 a t  free boundaries. 

at  rigid boundaries, 

3. Application of the perturbation method 
It is convenient to introduce a four-dimensional vector 

~ 

the four-dimensional operator 

and the matrix differential operator 

Furthermore, 
Vik = (“ 1. 

0 Uik  
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Equations (2.11)-(2.13) may then be written 
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avi 
axi 
- = 0. 

Intending to apply the perturbation method, we write 

+ €292(2) + . . . , 92 = 9(0) + 
??k = €V'i) + E2v(i) + . . , 
p = €@ + €2p@) + . . . , 

(3.3) 

(3.4) 

(3.5) 

where 9 is considered as known. Introducing (3.3)-(3.5) in (3.1), and utilizing 
the fact that (3.1) must be satisfied for all values of e, we obtain an infinite set of 
equations. It is appropriate in these equations to apply the operator 

(3.6) Lik = Dfk - I'9(")D&, 

where the superscript on D:k means that 9 is replaced by 9 ( O )  and 

It is readily shown that with the actual boundary conditions the operator Lik is 
self-adjoint. It has been proved by Schliiter et al. that Dfk is self-adjoint, and i t  
therefore here suffices toprove that also DZk is self-adjoint. We define the weighted 
scalar product of the two vectors vt and vi by 

(vi, v;) = Prn + a@'= , (3.8) 

where the bar denotes the average over the entire layer. Assuming that the 
vectors are solenoidal vectors and applying the boundary conditions, we then 
have 

- - - z  19(0)x 3 u' i k  u'! zk = (v:, D.&V;) (3.9) 

which proves the self-adjointness of the operator. 
Taking into account only terms up to the third order, we obtain from (3.1) 

(3.10) 
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Equation (3.10) is the linearized equation determining the critical Rayleigh 
number B(O). Due to the self-adjointness of Lik, a/at does not enter in this equation. 
The necessary and sufficient condition to secure that (3.11) and (3.12) are solvable, 
is that the vector on the right-hand side is orthogonal, in the sense of (3.8), to all 
the solutions of (3.10). From equation (3.11) we then obtain 

where d;)' denotes an arbitrary solution of (3.10). According to Schluter et al. 

(3.14) 

From equation (2.14) it  follows that r'9(o) = yhpB = BAv/vo,  where Av is the 
difference in viscosity between the two horizontal boundaries. (3.13) may then 
after some simple manipulation be written 

We shall assume that Av/vO is a relatively small quantity so that the last term in 
the parentheses may be neglected. This is a very good approximation also for 
moderate values of Av/vo. Indeed if the origin of the frame of references is placed 
in the middle of the fluid layer, this term is exactly zero for symmetrical boundary 
conditions (the free-free and the rigid-rigid case). (3.15) therefore reduces to 

(3.16) 

which determines 9(l). 

According to Schluter et al. 
Correspondingly we obtain from (3.12) an equation which determines %@). 

Assuming Av/vo relatively small, we then obtain 

In our derivation the amplitude of the motion is not normalized. We may there- 
fore in (3.3) choose e = 1, obtaining the same equation as would have been 
derived by using the straightforward iterakion process. Thus 

@- g ( 0 )  = A 9  = 9(1) + %(2), (3.18) 

where A% is considered as a known quantity. 
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4. Derivation of the non-linear amplitude equations 
As mentioned in the introduction we shall consider a motion which to the first 

order consists of only two Fourier components such that the vertical velocity 
takes the form 

u y  = All(t) f (2) cos kx cos zy + Ao2( t ) f ( z )  cos 21y, (4.1) 

where k2 + 12 = 412 = a2 (4.2) 
and x, y, x are used instead of xl, x2, x3, respectively. The overall wave number 
a will be set equal to a,, its value a t  the onset of convection. For I? = 0 ,  the function 
f ( z )  may (Pellew & Southwell 1940; Reid & Harris 1958) be written: 

rigid-rigid case 
3 

n= 1 
f ( x )  = 2 a, coshapnx, - 4 < x < 8, a, = 3.117, 

p1 = 1.2753, ~2 = 1.667-0*682i, P3 = PH7 

a l=  1, a2 = - 0.03076 + O-O5194i, a3 = a;; 

free-free case 
3 

n = l  
f ( z )  = x a,coshap,z, -8  < z < 4, 

ru2 = P3 = 0, ru1= J z i ,  
a1 = 1, 

rigid-free case 

a2 = a3 = 0;  

a, = n/ $2, 

3 

n=l 
f ( z )  = x a,sinhup,z, - 1 < z < 0, a, = 2.682, 

p l  = 1*331i, ~2 = 1.698 - 0.706i, P3 = P*7 

a1 = -i, u2 = - 0.00854 + O-O0173i, a3 = a;. 

The values of u(:) and u(i) corresponding to (4.1) are easily found from the 
continuity equation and vorticity equation, and iP) is found by elimination of 
p in (2.11) and application of the continuity equation. 

The second-order terms are found from (3.11). Since Av/vo is assumed relatively 
small, all terms on the right-hand side except the first, may be cancelled. In this 
term I? may be set equal to zero such that f ( z )  in (4.1) takes the values given above. 
By elimination of the pressure we then obtain 

where VE is the two-dimensional Laplace operator and 

The solution of (4.3) is after some calculations found to be given by 
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where (i,j) may take the six values 

F,(z) and Kij  are defined in the appendix. 

(for details see, for example, Palm (1960)). W takes the form 

(i,j) = (1, I), (0,2), (1,3), ( 2 ,  O ) ,  (0,4), ( 2 , 2 ) .  (4.5) 

u(q, u(q and 0(2) are found in a similar way as the corresponding iirst-order terms 

8(2) = a2 K i j  G,(x) cos ikx  cosjly, 
i,i 

where ( i , j )  in addition to the values (4.5) also takes the value (0,O).  Kij and G,(z) 
are defined in the appendix. 

Introducing our expressions for the first- and second-order terms in (3.18), we 
find after some calculations the amplitude equations 

KA,, = EAll -AAl lAo2-RA~,-PAl lA~2,  (4-7) 

KAo2 = EA,, - $AAt, - R, A:2 - &PA:, AO2,  (4.8) 
which are valid to the third order in the amplitude and for small values of Av/vo. 
Here 

K = 9(”) f D f &  + a 2 8  (D”f2  dz, s s 
E = @AWa2 fD2fdz, s 

(4.9) 

(4.10) 

where 

and P = 4R-R,. (4.14) 

The integral sign denotes integration over the fluid depth, i.e. - & < x < 4 for the 
rigid-rigid case and the free-free case, and - 1 < z 6 0 for the rigid-free case. 

5. Discussion of the amplitude equations 

AO2, and are formally the same equations as discussed in I-IV. Let 
Equations (4.7) and (4.8) yield the time development of the amplitudes A,, and 
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A = rgRco)A' (5.2) 

and E = 8 A g E ' .  (5.3) 
We then have that the transition between the regimes of hexagons and hexagons 
+rolls takes place for x = x,, where 

and the transition between the regimes of hexagons +rolls and rolls takes place 
for x = xz where 

x2 = ~ x1. (5.5) 
4R f 

Rl 
Evaluation of the integrals in (4.9)-(4.13) leads to: 

rigid-rigid case 

E' = 30.77, R = 200.08 + 10*578-1 + 10.43, 
A' = 577.6, R, =z 330.88 + 2.4029-1 - 0.836, 
B = 0-7 (air), x1 = 0.028, x2 = 0.106, 
8 = 6.0 (water), x1 = 0.098, x2 = 0.336, 
B = 3500 (Silicone oil AK350), x2 = 0.385, x1 = 0.109, 

free-free case 
E' = 22.21, 
A' = 279.1, 
B = 0.7 (air), x1 = 0.030, xz = 0.127, 
8 = 6.0 (water), x1 = 0.123, x2 = 0.437, 

xz = 0.483, 

R = 79.148 + 6.5558-1 + 4.222, 
R, = 183.39, 

= 3500 (Silicone oil A K  350)) x1 = 0.133, 

rigid-free case 
E' = 26.47, 
A' = 409.3, 

R = 132-28+ 6*430P1+ 8.645, 
R, = 213.19- 1.6258-l+ 1.975, 

8 = 0-7 (air), x1 = 0.029, xZ = 0.115, 
8 = 6.0 (water), x1 = 0.104, x2 = 0.367, 
9 = 3500 (Silicone oil AK350), x2 = 0,405. x1 = 0.116, 

The results above for the free-free case may be compared with those obtained in 
Segel(l965) (where a slightly different law of viscosity variation is used) and the 
agreement is very good. The values for R and R, in the rigid-rigid case may be 
compared with those obtained by Schutler et al. and the agreement is good for 
the leading terms. For the small terms there are, however, some discrepancies. 
We have not been able to find the reason for this. For the Prandtl numbers in 
question however, these terms are so small that they do not influence the result. 

6. Conclusion 
Both hexagons and rolls may be observed for Rayleigh numbers for which the 

corresponding X-values lie between x1 and x2. Which of these modes shall be 
realized depends on the initial conditions. Thus, if the Rayleigh number is 
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increased slowly, hexagons will be observed up to the value x2. Above this value 
the motion will consist of rolls. If the Rayleigh number now is decreased slowly, 
rolls will occur down to the value xl. Below this value, a hexagonal pattern will 
be observed. 

It is seen from the values above that xI and x2 are nearly the same for the rigid- 
rigid case, the free-free case and the rigid-free case. The Rayleigh numbers corre- 
sponding to the transitions between the various modes are given by 

where xl, is x1 or x2. The parentheses on the right contain only fluid properties, 
the acceleration of gravity and the depth of the fluid layer. Therefore, in experi- 
ments with the same fluid and fluid depth, but with different boundary conditions, 
A93'/9(O) will in the three cases considered be approximately proportional to the 
square of the qitical Rayleigh number. Thus the regime of cellular motion will 
take place for a larger interval of the Rayleigh number in the rigid-rigid case than 
in the two other cases. 

The most outstanding feature of (6.1) is, however, that A9/9(0) is proportional 
to the inverse of theJluid depth to the sixth power. The extent of the interval of the 
Rayleigh number for which hexagons are to be observed is therefore extremely 
sensitive to the choice of the fluid depth in the experiments. As an example, let 
us consider Silveston's (1958) experiments on thermal convection with rigid- 
rigid boundaries. From his data it follows that in the case of a fluid layer of a 
depth 7 mm and an average temperature of 30 "C, at the onset of convection 
Av/vo is about 0.43 for Silicone oil AK350. From the formulas above it then 
follows that the transition from the regime of hexagons to the regime of hexagons 
+rolls takes place for A9/W(O) = 2 yo and the transition from the regime of 
hexagons + rolls to the regime of rolls for A9/9?(0) = 7 %. If, on the other hand, 
the depth of the same fluid had been chosen as 5 mm, the corresponding transition 
values must be multiplied with a factor ($)6 = 7.53 giving A 9 / 9 ( O )  = 15 % and 
A9/9B0) = 54 %, respectively. 

Since appropriate experimental investigations of the transition values are not 
available, a direct comparison between theory and experiments is not possible. 
It may, however, be mentioned that Koschmieder (1966) in his experiments did 
not observe hexagons in the rigid-rigid case. It turns out that he used a lOmm 
deep layer of Silicone oil and only examined the pattern for A9/9(O) = 20 %. 
According to the theory, hexagons are not stable for this value of the Rayleigh 
number. However, with rigid-free boundaries and a depth of 4mm, he observed 
a very stable hexagonal pattern. According to the formulas above,? the transition 
Rayleigh number for hexagons/hexagons +rolls is given by A9/9(O) = 25 % and 
the transition Rayleigh number for hexagons + rolls/rolls by A93'/9(O) = 86 yo. 

t Strictly speaking, the 'free' boundary conditions as applied here are not the correct 
boundary conditions for a free surface, the elevation of this being neglected. Observations 
show, however, that this elevation is very small. Furthermore, with the correct free 
boundary conditions the principle of exchange of stabilities is probably not strictly true, 
since gravity surface waves may be set up. It does not, however, seem reasonable that this 
effect is of importance. 

42-2 
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It must be pointed out that in the derivation of the formulas above, we assumed 
that the amplitude of the motion is small, and that Av/vo is a relatively small 
quantity. We believe that our approximations are fairly good in the case with 
a fluid depth 7 mm considered above. For fluid depth of 4 mm, we surely stretch 
our formulas too far. However, the qualitative result that the interval of Rayleigh 
numbers where hexagons occur, increases strongly when the fluid depth is 
lowered, remains correct. It is pertinent in this connexion to point out that the 
occurrence of a hexagonal pattern is, to our knowledge, always strongly related 
to  thin layers. As is well known, BBnard (1901) in his experiments applied fluid 
depths down to 1 mm. For thin layers hexagons should be observed as well in the 
rigid-rigid case as in the rigid-free case. In the first case there will be no disturbing 
effects due to the surface tension. 

As in the case of free-free boundaries, the critical Rayleigh number will be 
lowered somewhat due to the variation of v with temperature. This effect is not 
computed here. For the free-free case we refer to Palm (1960) and for the rigid- 
rigid case to Jenssen (1963). To obtain a similar formula also for the rigid-free 
case, vo must be interpreted as the value of v in a certain point near the middle 
of the fluid layer. As to the occurrence of subcritical Rayleigh numbers due to 
non-linear effects, we refer to Segel & Stuart (1963) and Segel (1965). It should 
also be pointed out that, as shown in Palm (1960) and Segel & Stuart (1962)) the 
hexagons are characterized by ascent or descent in the middle of the cell according 
as the viscosity decreases or increases with temperature. 

We have here only taken into account the variation of v with temperature. Also 
other material properties may vary. These variations are, however, usually much 
smaller than the variation of v. Also the effect of surface tension has been neglected 
in this paper. 

Appendix 
The second-order terms u($) and 8(,) have the forms (4.4) and (4.6). The index n 

is defined by ( ik )2  + (jZ), = nu2; n thus takes the values 1 , 3 , 4  and 0. The amplitude 
factors Kij are defined by 

K11 = A,,A02/4a, = A?l/16a, 

R13 = 3A,iAo,/4a, K2o = 3A?1/16a, 

KO, = A&/a, 
Koo = (A:, + 2At2)/8a. 

K,, = A2,,/3a, 

For the functions F,(z) the following expressions are obtained for n = 1,3 ,4:  

1 3 

L Y , j = l  

sinh (pa + ,up) uz 

A,+ 
sinh (pa - pg) az 

A, 
P m ( 4  = x “.qq - + 

3 

a=l 
+ 2, b,,sinhq,,az, 

where we have set 

HI = pp(2h;+ A:) + P-’,~hp{Ap(hp + 7h, - 5 )  + h,(4h, - I)}, 

H3 = hlp(3hi -  A:) + Y-’pp{hp(hp + ha + 1) + 2h,(h, - I)), 

H4 = ( h ~ p ~ - h ~ ) + ~ 8 - 1 ~ ~ ~ h p ( h , - ~ h , + 4 ) + h a ( h , - 4 ) } ,  
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and h a =  I - & ,  qna=n+n+(,u2-1), 
A; = {(pa k ,u,&~ - n13 + n2(O)/a4. 
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b,, are constants which have to be determined such that u(q satisfies the proper 
boundary conditions. For the rigid-free case the upper sign has to be used, while 
the lower sign applies t o  the rigid-rigid and the free-free cases. 

The corresponding expressions for the G,(z) for n = 1 , 3  and 4 are: 

3 

+ 9 - 1  2 a, ap HA{sinh (pa +,up) az k sinh (pa - pp) az} 
a,/l=l 

In  addition to the quantities defined above we have introduced 

D$ = { ( ~ ~ ~ ~ p ) ~ - n } - ~ A 2 ,  
H i  = pp(hp+2ha), Hk = ~ p h p  Hi = *Pp(hg-ha). 

Finally we quote the function Go(z) 

where C is a constant which may be written 

for the rigid-free case, and 

for the rigid-rigid and the free-free cases. 
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