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The interval of Rayleigh numbers in Bénard convection corresponding to cellular
motion is determined in the case of free-free boundaries, rigid-free boundaries
and rigid-rigid boundaries, taking into account the variation of the kinematic
viscosity with temperature. Neglecting the effect of surface tension, it is shown
that this interval is largest for the rigid-rigid case. The most important feature
from the obtained formula (6.1) is, however, that the interval is extremely
dependent on the depth of the fluid layer. To obtain a cellular pattern it is there-
fore necessary to have very small fluid depths. For example, with Silicone oil and
a fluid depth of 7mm, cellular motion will, according to the theory, be observed
for Rayleigh numbers larger than the critical value and less than 1-07 times the
critical value. For a fluid depth of 5 mm, however, the formula (6.1) gives that
cellular motion will be observed for Rayleigh numbers up to 1-54 times the
critical value.

1. Introduction

When in experiments on thermal convection the Rayleigh number is given a
value larger than the critical one, a motion will be set up which often may have
a very regular pattern. The latest experimental results available concerning the
cellular motion in thermal convection are those due to Koschmieder (1966), who
demonstrates that in the case of rigid-free boundaries, a regular cellular motion
develops, the cells being nearly of hexagonal form. In the case of rigid-rigid
boundaries, however, he finds that other patterns are preferred, which are highly
influenced by the lateral boundaries.

From the theoretical side it has been shown in works by Palm (1960), Segel &
Stuart {1962), Palm & @iann (1964) and Segel (1965) (referred to as I-IV,
respectively) that for values of the Rayleigh number slightly above the critical
one, hexagonal cells constitute the only stable motion. For larger values of the
Rayleigh number both hexagons and two-dimensional rolls are stable solutions,
whereas for still higher values, rolls are the only stable modes. To derive this
result, it was essential to take into account the variation of viscosity with tem-
perature. However, for mathematical simplicity only the free-free case was
considered. In order to be able to compare theory and experiments quantitatively
we shall therefore in the present note take into account more realistic boundary
conditions, i.e. we shall consider the rigid-rigid case and the rigid-free case.
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Schlitter, Lortz & Busse (1965), extending the work by Malkus & Veronis
(1958), prove, under very general conditions, that when the variation of material
properties with temperature is neglected, two-dimensional rolls are the only
stable solutions. We shall here in part apply the same techniques and notations
as used by Schliiter et al. From the results of the papers I-IV we are, however,
led to take into account only two of all the possible solutions of the first-order
equations.

2. The basic equations and boundary conditions

It is assumed that the fluid layer is of infinite horizontal extent and is bounded
by two horizontal boundaries. When the Boussinesq approximations are applied,
the equations of motion and continuity may be written

ou, ou; 1 op pg (Vi) 9
o "o, pedw, po T ow, (2.1)
ou;
e U - (2.
ox ’ (2.2)

where we have used the summation convention, and ¢, £ may be 1, 2, 3. x,, x, are
horizontal co-ordinates, x, the vertical co-ordinate measured positive upwards,
t the time, u, the velocity, p the density, p, a standard density, p the pressure,
g the acceleration of gravity and v the kinematic viscosity defined as the ratio of
the viscosity divided by p,. d;; is the Kronecker delta, and u; is the deformation
tensor given by

ou; oy
uik = é;k axi . (2.3)
Furthermore, the equation for conduction of heat is
oT oT
ol hEnS v /.
5 T % 5, KVET (2.4)

and the equation of state may be written
p = po(1— T —Tj)). (2.5)

Here 7' denotes the temperature, « the (constant) thermal diffusivity, « the
coefficient of expansion and 7, is a standard temperature. It will be assumed that,
v is a linear function of temperature

. v =vo(1+7(T —Ty)), (2.6)
where v is a constant.
The temperature may be written

T = Ty— prs+0, (2.7)

where f = AT [h with AT denoting the difference in the temperature between the
lower and upper boundary and % the depth of the layer. The pressure is divided in

two parts R
P P =Dp:+D, (2.8)
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where p, is defined by
1 op,
Py 05
i.e. p, is the pressure in the case of pure heat conduction with a temperature
T = T,— fx,. Applying (2.2) and (2.6), the viscous term in (2.1) may be written
3(;’::) = vy V2u,— vy vf 3(92:3;:1'19) ¥ v,y 3(3::«) ) (2.10)
Let 4 denote the depth of the fluid layer. To get a dimensionless form of the
equations we set
x; = hxi, w,=«Kuilh, t="h%[k, 0=«vy0agh?,
D= Kpop'[R?, wy = Kuglh®.
This yields, applying (2.9) and (2.10), and dropping the primes,

= — g(1+afx,), (2.9)

ou, ou,; op (3 Uyy,) o(Ouy,)
i = 2 ; . — v T t 2.11
7 + 2, o, o, + P08+ PV, — TR o, + o ( )
o0 o0 9
had = = 12
% +uy P V0 + Rug, (2.12)
ou;

Here & is the Prandtl number, # the Rayleigh number and I" a number
proportional to dv/dT':

p0 MMy 14
P p 174 v agh? hpyP|R. (2.14)

The horizontal boundaries may be either rigid or so-called ‘free’. In the first
caseu; = 0at the boundaries;in thelast case the vertical velocity and the shearing
stressesare zero at the boundary. It will also be assumed that the temperatures at
the horizontal boundaries are maintained constant. Applying (2.13) we thus have

;=0 =0 atrigid boundaries,
Uy = 0%uy/0x3 = 0 = 0 at free boundaries.

3. Application of the perturbation method

It is convenient to introduce a four-dimensional vector

)
Y = w.l’
]
o |5
axk 3? ’
T

and the matrix differential operator
Do — V2 R4y, }
ETNPS,, PVW)T

the four-dimensional operator

[0 0
Furthermore, LR (TP
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Equations (2.11)-(2.13) may then be written

ov; ov, op (@3 v4) +T (V9 V1))

T =+ kaxk“ a—xi'f'Dikvk—F'% o, o, (3.1)
g;’— = 0. (3.2)
Intending to apply the perturbation method, we write
R = RO+ RV + 2R+ ..., (3.3)
v, = P+ 2@+ ..., (3.4)
p=epVtep@+ ..., (3.5)

where Z is considered as known. Introducing (3.3)—(3.5) in (3.1), and utilizing
the fact that (3.1) must be satisfied for all values of ¢, we obtain an infinite set of
equations. It is appropriate in these equations to apply the operator

Ly, = D} — F'%(O)D;-/k, (3.6)
where the superscript on DY, means that % is replaced by Z© and
0 oy o
Dy, = {0 ‘5\k(933V + % )+8k3 3z } (3.7)

It is readily shown that with the actual boundary conditions the operator L, is
self-adjoint. It has been proved by Schliiter et al. that DY, is self-adjoint, and it
therefore here suffices to prove that also D7, is self-adjoint. We define the weighted
scalar product of the two vectors v;, and vy, by

(v}, v}y = POO" + BOU ), , (3.8)
where the bar denotes the average over the entire layer. Assuming that the
vectors are solenoidal vectors and applying the boundary conditions, we then
have Yy

’ ” /a(x U; )
{v5, DY, vy = ZO; —;@L
'%(O)Z:i ik uzk = <v¥aD;¥k vllc> (3~9)
which proves the self-adjointness of the operator.
Taking into account only terms up to the third order, we obtain from (3.1)

ap(l)
L v% - Eroialll (3.10)

A

— BOUPS,,  (3.11)

0p®@ oD e v‘-l)) 8(2)(1)1;‘.])) 32,(1
T ) P N ¢ ) i (1) 3Yik) 0 Yk
Lt =g =g 1A =T+

op® oy @ B3 v3) O(xsv %)
S T A ekl PO | Mk o s k) 9 =8tk
Lo = = W g+ + R L e =y
2 o @ CINE) @
T (v'5vik) Pa(”o Vi) _ ROVYS,— R » i (3.12)

oxy, oxy,
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Equation (3.10) is the linearized equation determining the critical Rayleigh
number Z©. Due to the self-adjointness of L;,,, 6/2¢ does not enter in this equation.
The necessary and sufficient condition to secure that (3.11) and (3.12) are solvable,
is that the vector on the right-hand side is orthogonal, in the sense of (3.8), to all
the solutions of (3.10). From equation (3.11) we then obtain

L)
<,,(1> U(l)a (1>_,_ Fg<1)< W, > I‘< (wr ”(1_”(>
ox;,

. oy y
+ <’u(i1) , 7> — BV Y DS, =0, (3.13)

where ¢} denotes an arbitrary solution of (3.10). According to Schliiter ef al.

ot
W' D _
<v : 3xk> 0. (3.14)

From equation (2.14) it follows that T#©® = yhfP = PAv|v,, where Av is the
difference in viscosity between the two horizontal boundaries. (3.13) may then
after some simple manipulation be written

PR (9(1>u<1>+£’ ou; 3“) _< ar > T ROu’ (‘931*‘(1)). (3.15)

3 5, O, ot T,

We shall assume that Av/y, is a relatively small quantity so that the last term in
the parentheses may be neglected. This is a very good approximation also for
moderate values of Ay/y,. Indeed if the origin of the frame of references is placed
in the middle of the fluid layer, this term is exactly zero for symmetrical boundary
conditions (the free-free and the rigid-rigid case). (3.15) therefore reduces to

av(l)

. O(0DuE)
0

k

P ROFAY u(l) = <,,<1) , (3.16)

which determines 0,
Correspondingly we obtain from (3.12) an equation which determines #®.

According to Schliiter et al.
<U(1) oD v > =0
ox,,

Assuming Av/y, relatively small, we then obtain

— , 31)(2)
PROGYD = <Ug) S atl

s VD
<’U€L'l) ,’U(}c) a—xl—>. (3.17)

In our derivation the amplitude of the motion is not normalized. We may there-
fore in (3.3) choose ¢ = 1, obtaining the same equation as would have been
derived by using the straightforward iteration process. Thus

RB— RO = AR = B+ HD, (3.18)

where AZ is considered as a known quantity.
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4. Derivation of the non-linear amplitude equations

As mentioned in the introduction we shall consider a motion which to the first
order consists of only two Fourier components such that the vertical velocity
takes the form

w'P = A,,(8) f(z) cos kx cos ly + Ag,(t) f(2) cos 2y, (4.1)
where 2+ 12 =42 = a? (4.2)
and z, y, z are used instead of x;, %,, ,, respectively. The overall wave number
awill beset equal to a,, its value at the onset of convection. For I = 0, the function
f(z) may (Pellew & Southwell 1940; Reid & Harris 1958) be written:

rigid-rigid case

3
f()= X a,coshau,z, —Li<z<i, a, = 3-117,
n=1
iy = 1-2753, g = 1-667—-0-682i, R
a, =1, a, = —0-03076+ 0-05194%, ay = ag;
free-free case
3
f@)= 3 a,coshau,z, —1<z<1i, a, = 7[4/2,
n=1
= V24, o= iy =0,
a, =1, y = @y = 0;
rigid-free case
3
f(z)= X a,sinhay,z, —-1<2<0, a, = 2-682,
n=1
sy = 1-3314, y = 1-698 — 0-7064, py =",
a, = —1, @y = —0-00854+0-001733, a, = a;.

The values of 4% and «% corresponding to (4.1) are easily found from the
continuity equation and vorticity equation, and 6® is found by elimination of
o in (2.11) and application of the continuity equation.

The second-order terms are found from (3.11). Since Av/v, is assumed relatively
small, all terms on the right-hand side except the first, may be cancelled. In this
term I may be set equal to zero such that f(z) in (4.1) takes the values given above.
By elimination of the pressure we then obtain

30( )

(Vo — ZOVE) uD = — P-1V25,u (1) 3 —Viud —— o, (4.3)
.7
where V2 is the two-dimensional Laplace operator and
o2 N
1= Pwyom, 05 V2.

The solution of (4.3) is after some calculations found to be given by

w9 = 3 K,;F,(z)cosika cosjly, (4.4)
1,7
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where (¢,5) may take the six values
(%,9) = (1,1), (0,2), (1,3), (2,0), (0,4),(2,2). (4.5)
F,(z) and K;; are defined in the appendix.

42, u® and 6@ are found in a similar way as the corresponding first-order terms
(for details see, for example, Palm (1960)). #® takes the form

69 = a* 3 K,;G,(z) cosikz cosjly, (4.6)
5

where (¢,7) in addition to the values (4.5) also takes the value (0, 0). K;; and G,,(2)
are defined in the appendix.
Introducing our expressions for the first- and second-order terms in (3.18), we
find after some calculations the amplitude equations
KAn = EAu_AAquz”‘RA:;l“PAuA%za (4.7)
KAoz = BAy,—1AAL - Ry A% — 1P A} Ay, (4.8)
which are valid to the third order in the amplitude and for small values of Av/v,.
Here

K = 20 f fDfdz + a2 P f (D)2 dz, (4.9)
E = PARa? f fD¥ dz, (4.10)
A = }T%® f D(5a%f "2 + (f" +a*f)? dz, (4.11)

R =~ 352 [ {BDF +2f'Df) + 3F, fDF + AT(GDF ~f DY}

— 522 [ BGUIDY +1'DF) + G210+ DY)
+Go(2fDf — ' D)+ 26,(fD°f —f D)}z, (4.12)

Ry == 3, % [ B0y~ Df)

-5 [RaUDY 1 D)+ G DY - DYy

02
where Del—g-> -
and P=4R—R, (4.14)
The integral sign denotes integration over the fluid depth, i.e. —% < z <  for the
rigid-rigid case and the free-free case, and -1 < z < 0 for the rigid-free case.

5. Discussion of the amplitude equations

Equations (4.7) and (4.8) yield the time development of the amplitudes A, and
A\, and are formally the same equations as discussed in I-1V. Let
_AZ [ (Av\?
X= 7o 70 s
4 Fluid Mech. 30

(5.1)
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A =TROA (5.2)
and E = PARE. (5.3)

We then have that the transition between the regimes of hexagons and hexagons
+rolls takes place for y = y,, where

B, P A?
Y= (BR-REAOE
and the transition between the regimes of hexagons+rolls and rolls takes place
for y = x, where AR+R,
Xo = R, X1
Evaluation of the integrals in (4.9)—(4.13) leads to:

(5.4)

(5.5)

rigid-rigid case

E' = 3077, R = 200-0Z +10-579-1 +10-43,
A’ = 5776, R, = 330-87 + 2-4027-1—0-836,
& = 0-7 (air), ¥, = 0028, x, = 0106,
P = 6-0 (water), xy = 0098, x,=0-336,

P = 3500 (Silicone oil AK 350), x,; = 0109, x, = 0-385,

Jree-free case

B = 2221, R ="179142+ 6-5557 1 +4-222,
A’ = 2791, R, = 12332,

P = 07 (air), xy = 0-030, x,=0-127,

P = 6-0 (water), yp = 0122, y, = 0-437,

2 = 3500 (Silicone oil AK 350), ¥, = 0-133, y, = 0-483,

rigid-free case

B = 2647, R = 13227 + 6-430#1 4 8-645,
A’ = 409-3, R, = 21312 —1-625-1+1.975,
P = 07 (air), ¥y = 0-029, y,=0-115,
P = 6-0 (water), ¥, = 0-104, 1y, = 0-367,

2 = 3500 (Silicone oil AK 350), x, = 0-116, y, = 0-405.

The results above for the free-free case may be compared with those obtained in
Segel (1965) (where a slightly different law of viscosity variation is used) and the
agreement is very good. The values for B and R, in the rigid-rigid case may be
compared with those obtained by Schiitler ef al. and the agreement is good for
the leading terms. For the small terms there are, however, some discrepancies.
We have not been able to find the reason for this. For the Prandtl numbers in
question however, these terms are so small that they do not influence the result.

6. Conclusion

Both hexagons and rolls may be observed for Rayleigh numbers for which the
corresponding y-values lie between y, and y,. Which of these modes shall be
realized depends on the initial conditions. Thus, if the Rayleigh number is
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increased slowly, hexagons will be observed up to the value y,. Above this value
the motion will consist of rolls. If the Rayleigh number now is decreased slowly,
rolls will occur down to the value y,. Below this value, a hexagonal pattern will
be observed.

It is seen from the values above that y, and y, are nearly the same for the rigid-
rigid case, the free-free case and the rigid-free case. The Rayleigh numbers corre-
sponding to the transitions between the various modes are given by

2 ) A\ 2
22120 = 1, (5) = 1o (gy) A% (6.1)
where y; ,is x, or x,. The parentheses on the right contain only fluid properties,
the acceleration of gravity and the depth of the fluid layer. Therefore, in experi-
ments with the same fluid and fluid depth, but with different boundary conditions,
AR|A® will in the three cases considered be approximately proportional to the
square of the gritical Rayleigh number. Thus the regime of cellular motion will
take place for a larger interval of the Rayleigh number in the rigid-rigid case than
in the two other cases.

The most outstanding feature of (6.1) is, however, that AZ/%® is proportional
to the inverse of the fluid depth to the sixth power. The extent of the interval of the
Rayleigh number for which hexagons are to be observed is therefore extremely
sensitive to the choice of the fluid depth in the experiments. As an example, let
us consider Silveston’s (1958) experiments on thermal convection with rigid-
rigid boundaries. From his data it follows that in the case of a fluid layer of a
depth 7mm and an average temperature of 30°C, at the onset of convection
Av/v, is about 0-43 for Silicone oil AK 350. From the formulas above it then
follows that the transition from the regime of hexagons to the regime of hexagons
+rolls takes place for AZ/#® = 29, and the transition from the regime of
hexagons +rolls to the regime of rolls for AZ/#® = 7%, If, on the other hand,
the depth of the same fluid had been chosen as 5 mm, the corresponding transition
values must be multiplied with a factor (£)® = 7-53 giving A% /#© = 15 Y, and
AR| RO = 54 9, respectively.

Since appropriate experimental investigations of the transition values are not
available, a direct comparison between theory and experiments is not possible.
It may, however, be mentioned that Koschmieder (1966) in his experiments did
not observe hexagons in the rigid-rigid case. It turns out that he used a 10mm
deep layer of Silicone oil and only examined the pattern for AZ/Z©® = 20 %,.
According to the theory, hexagons are not stable for this value of the Rayleigh
number. However, with rigid-free boundaries and a depth of 4mm, he observed
a very stable hexagonal pattern. According to the formulas above, the transition
Rayleigh number for hexagons/hexagons +rolls is given by AZ/Z©® = 25 %, and
the transition Rayleigh number for hexagons + rolls/rolls by AZ/Z© = 86 %,.

1 Strictly speaking, the ‘free’ boundary conditions as applied here are not the correct
boundary conditions for a free surface, the elevation of this being neglected. Observations
show, however, that this elevation is very small. Furthermore, with the correct free
boundary conditions the principle of exchange of stabilities is probably not strictly true,
since gravity surface waves may be set up. It does not, however, seem reasonable that this

offect is of importance.
42-2
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It must be pointed out that in the derivation of the formulas above, we assumed
that the amplitude of the motion is small, and that Av/y, is a relatively small
quantity. We believe that our approximations are fairly good in the case with
a fluid depth 7 mm considered above. For fluid depth of 4 mm, we surely stretch
our formulas too far. However, the qualitative result that the interval of Rayleigh
numbers where hexagons occur, increases strongly when the fluid depth is
lowered, remains correct. It is pertinent in this connexion to point out that the
occurrence of a hexagonal pattern is, to our knowledge, always strongly related
to thin layers. As is well known, Bénard (1901) in his experiments applied fluid
depths down to 1 mm. For thin layers hexagons should be observed as well in the
rigid-rigid case as in the rigid-free case. In the first case there will be no disturbing
effects due to the surface tension.

As in the case of free-free boundaries, the critical Rayleigh number will be
lowered somewhat due to the variation of v with temperature. This effect is not
computed here. For the free-free case we refer to Palm (1960) and for the rigid-
rigid case to Jenssen (1963). To obtain a similar formula also for the rigid-free
case, v, must be interpreted as the value of v in a certain point near the middle
of the fluid layer. As to the occurrence of subcritical Rayleigh numbers due to
non-linear effects, we refer to Segel & Stuart (1962) and Segel (1965). It should
also be pointed out that, as shown in Palm (1960) and Segel & Stuart (1962), the
hexagons are characterized by ascent or descent in the middle of the cell according
as the viscosity decreases or increases with temperature.

We have here only taken into account the variation of v with temperature. Also
other material properties may vary. These variations are, however, usually much
smaller than the variation of v. Also the effect of surface tension has been neglected
in this paper.

Appendix

The second-order terms %@ and 6® have the forms (4.4) and (4.6). The index n
isdefined by (¢k)2 + (jI)? = na?; nthus takes the values 1, 3,4 and 0. The amplitude
factors K;; are defined by

K,y = Ay Agy/4a, Ky, = A3%,/16aq,
K3 =34, 44,/4a, Ky = 34%/16a,
Koy = A3yla, K,y = A}/20,

Ky = (A% +243,)/80.

For the functions F, (2) the following expressions are obtained for n = 1,3, 4:

3 sinh (¢, +p45) a0z sinh (u,—p )az)
= 3 H, «a TEPTE 4 « [F

I

r

o, f=1

+ 23“ b,,sinhgq,, az,
where we have set =
Hy = pp(205+A2) + P (A s+ TA, = 5) + A, (44, — 1)},
Hy = pp(275— A2) + P A p(As+ A+ 1) + 22,2, — 1)},
Hy =Apgg—A0) + 3P A p(Ap— 22, + 4) + A, (A, — 4)},
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and Aa = 1_/1’02” na = n+n%(ﬂ’i—l)’
At = {(y + p)* — 1P+ nZOfal.

b, are constants which have to be determined such that «@ satisfies the proper
boundary conditions. For the rigid-free case the upper sign has to be used, while
the lower sign applies to the rigid-rigid and the free-free cases.

The corresponding expressions for the G, (z) for n = 1, 3 and 4 are:

3 3 1 —
Golr) = 3 a,a,H, (Smh (”l‘;f””) az , sinh (”5_ g) “Z)

a,f=1

ad, p=

3
+P1 3 a,a,H,{sinh (u,+ ps) az + sinh (u, — pg) az}
A=1

3
+ E bna(qgha - n)2 sinh 9o A2+
a=1

In addition to the quantities defined above we have introduced

D = {(p £ pp)*—n} AT,

H{ = pg(Ag+2A,), Hy=pghs Hi=tusds—2,).
Finally we quote the function Gy(z)

inh (p. inh (s, —
sinh (4, + pg) 0z _ sin (a—pp)az Oz),
Py +/l’ﬂ Ho— /l’ﬂ

where C' is a constant which may be written

G = 3 a1
a,p=1

0= sinh (, +pg)a  sinh (u, —pg) a
y. +/I’ﬂ Ha _/l’ﬂ

for the rigid-free case, and
sinh (x, 4 p5) @/2 4 sinh (s, — p4) a/2)
ot g Ha—Hp
for the rigid-rigid and the free-free cases.

o
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